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Lhermitte-Duclos disease (LDD), or dysplastic gangliocytoma of the cerebellum, is an unusual hamartomatous
overgrowth disorder. LDD can be familial or, more commonly, sporadic. It has been only recently recognized that
LDD may be associated with Cowden syndrome (CS). Over 80% of patients with CS carry germline mutations in
PTEN. It remains unclear whether all cases of LDD, even without features of CS, are caused by germline PTEN
mutation and whether somatic PTEN mutation occurs in sporadic LDD. We obtained paraffin-embedded LDD
lesions from 18 unselected, unrelated patients and performed mutational analysis of PTEN. Overall, 15 (83%) of
18 samples were found to carry a PTEN mutation. All individuals with mutations were adult-onset patients, but
the three without mutations were diagnosed at the ages of 1, 3, and 11 years. Germline DNA was available from
six adult-onset cases, and all had germline PTEN mutations. Of these six, two had CS features, one did not have
CS features, and three were of unknown CS status. Immunohistochemistry revealed that 75% of the LDD samples
had complete or partial loss of PTEN expression accompanied by elevated phosphorylated Akt, specifically in the
dysplastic gangliocytoma cells. These data suggest that the loss of PTEN function is sufficient to cause LDD. The
high frequency and spectrum of germline PTEN mutations in patients ascertaining by LDD alone confirm that LDD
is an important defining feature of CS. Individuals with LDD, even without apparent CS features, should be counseled
as in CS.

PTEN/MMAC1/TEP1 (MIM 601728), on 10q23.3, en-
codes a lipid and protein phosphatase (Li and Sun 1997;
Li et al. 1997; Steck et al. 1997). PTEN signals down
the phosphoinositol-3-kinase (PI3K)/Akt pathway (Mae-
hama and Dixon 1998; Stambolic et al. 1998; Weng et
al. 1999). Proper PTEN signaling, via both PI3K/Akt-
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dependent and -independent pathways, leads to G1 cell
cycle arrest and/or apoptosis (Furnari et al. 1998; Li and
Sun 1998; Stambolic et al. 1998; Weng et al. 1999,
2001a, 2001b, 2001c, 2001d).

Germline mutations in PTEN cause Cowden syndrome
(CS [MIM 158350]), an autosomal-dominant condition
with age-related penetrance characterized by multiple ha-
martomas affecting derivatives of all three germ layers
and by a high risk of breast, thyroid, and endometrial
cancers (Liaw et al. 1997; Marsh et al. 1998; Eng 2000).
Germline PTEN mutations have been found in 81% of
CS probands and in 60% of patients with Bannayan-
Riley-Ruvalcaba syndrome (BRRS [MIM 153480]), a re-
lated but apparently distinct hamartoma syndrome char-
acterized by neonatal onset, macrocephaly, hemangiomas,
lipomatosis, and speckled penis (Liaw et al. 1997; Marsh
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et al. 1997, 1998, 1999). A subset of seemingly unrelated
clinical conditions, such as Proteus syndrome (PS [MIM
176920]), Proteus-like syndromes, and VATER associa-
tion with macrocephaly and ventriculomegaly, have been
associated with germline PTEN mutations (Zhou et al.
2000b, 2001; Reardon et al. 2001; Smith et al. 2002).

Lhermitte-Duclos disease (LDD), or dysplastic gan-
gliocytoma of the cerebellum, is an unusual condition
usually occurring sporadically but also in a familial form
(Albrecht et al. 1992). LDD is believed to be a hamar-
tomatous overgrowth of hypertrophic ganglion cells that
replace the granular-cell layer and Purkinje cells of the
cerebellum, resulting in global thickening of the cere-
bellar folia (Ambler et al. 1969; Russell-Jones et al.
1981; Albrecht et al. 1992; Nowak and Trost 2002).
Clinically, therefore, patients with LDD may present
with ataxia, signs and symptoms of increased intracra-
nial pressure, and seizures (Ambler et al. 1969; Russell-
Jones et al. 1981; Albrecht et al. 1992; Nowak and Trost
2002). There are ∼134 single cases or selected small
series of patients with LDD that have been reported in
the literature to date (reviewed by Vinchon et al. 1994;
Liaw et al. 1997; Iida et al. 1998; Marsh et al. 1998;
Koch et al. 1999; Nelen et al. 1999; Sutphen et al. 1999;
Robinson and Cohen 2000). Of these, 67 cases had fea-
tures suggestive or diagnostic of CS, although a definitive
diagnosis of CS in the majority of these cases was not
established. Prior to the identification of PTEN as the
CS-susceptibility gene (Liaw et al. 1997), the co-occur-
rence of documented CS cases and families with LDD
(Padberg et al. 1991; Albrecht et al. 1992; Eng et al.
1994) suggested, but did not show conclusively, that
LDD and CS share a common etiology. Subsequently,
germline PTEN mutations have been identified in three
well-documented CS kindreds segregating LDD (Liaw et
al. 1997; Nelen et al. 1997; Marsh et al. 1998), thus
lending some molecular credence to the previous clinical
hypothesis. Conditional Pten disruption in the mouse
cerebellum resulted in a LDD-like phenotype, further
suggesting that loss of function of PTEN might be suf-
ficient to cause human LDD (Backman et al. 2001; Kwon
et al. 2001). However, it is not known if all cases of
human LDD, even without features of CS, are caused
by germline PTEN mutation and if somatic PTEN mu-
tation can account for sporadic LDD. To this end, we
have accrued 18 unselected, unrelated patients with
LDD, without regard to the presence or absence of other
features and have performed an extensive analysis for
the presence of PTEN mutations. We also examined the
expression levels of PTEN and phosphorylated Akt (P-
Akt) in archived affected cerebellar tissues using
immunohistochemistry.

Archived paraffin-embedded tissue from 18 unse-
lected, anonymized patients with LDD (with linked dem-
ographic, clinical, and pathologic information) was ac-

crued from multiple centers in the United States and
Europe, in accordance with protocols approved by the
Dana-Farber Cancer Institute (1996–1998) and The
Ohio State University (1998–present) institutional re-
view boards. For all patients, the diagnosis of LDD was
confirmed by pathology after surgical resection or bi-
opsy. All histopathologic sections were subjected to cen-
tralized re-review by C.D.M. and A.R.C. Available clin-
ical information from all 18 patients was reviewed to
determine if any of them met the operational diagnostic
criteria for CS, as delineated by the International Cow-
den Consortium or the U.S. National Comprehensive
Cancer Network (Eng 2000) (table 1). Of the 18 patients
reviewed, 4 individuals (LDD-7, LDD-8a, LDD-8b, and
LDD-14), all female, could be clinically classified as hav-
ing CS. In 3 patients (LDD-1, LDD-5, and LDD-17), the
diagnostic features of CS were absent. Insufficient clin-
ical information was available to conclusively determine
CS status in the remaining 11 patients.

DNA was extracted from archival paraffin-embedded
cerebellar tissue sections with lesions using a QIAamp
DNA Mini Kit (Qiagen). The procedure was performed
according to the manufacturer’s instructions, except that
a prolonged (2-d) proteinase-K digestion at 65�C was
added. The samples were then subjected to PTEN mu-
tation analysis, which was performed without knowl-
edge of other clinical information. The entire coding
sequence, the exon-intron boundaries, and the flanking
sequences of PTEN were analyzed for mutations us-
ing PCR-based denaturing gradient gel electrophoresis
(DGGE) and sequencing, as described elsewhere (Marsh
et al. 1998; Mutter et al. 2000). A mutation-positive
result led us to obtain germline DNA from paraffin-
embedded adjacent normal tissue, if present, using la-
ser capture microdissection (LCM) (Kurose et al. 2002);
LCM-derived germline DNA was then subjected to
PTEN mutation analysis. A mutation-negative result in
tissue denotes the absence of PTEN mutation in both
the germline and in the tissue. Samples that were mu-
tation negative in the coding and flanking intronic
regions were subjected to PTEN promoter mutation
analysis, as described elsewhere (Zhou et al. 2003).

PCR-based DGGE and subsequent sequencing re-
vealed 16 intragenic PTEN mutations in 15 (83%) of
the 18 samples (table 1). By using LCM, we were able
to microdissect affected and adjacent nonaffected tissues
in four samples (LDD-G5, LDD-5, LDD-7, and LDD-
19). Nonaffected tissue sections were available for an-
other two patients (LDD-9a and LDD-14) and served
as sources of germline DNA. Thus, six had matched
germline DNA, and all six were found to have germline
mutations. In the sample from patient LDD-19, in ad-
dition to the germline mutation Y88H, which was de-
tected in DNA from both nonaffected bone tissue and
affected cerebellar tissue, a second mutation, H141R,
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Table 1

Summary of Patients with LDD and PTEN and P-Akt Status by Immunohistochemistry

PATIENT

CHARACTERISTICS OF

PATIENTS WITH LDD RESULTS OF ANALYSIS

Sex/Age
(years) CS/Features of CS PTEN Mutations Germline/Somatic LOHa/ROHb PTEN Levels P-Akt Levels

LDD-G1 F/53 ? 16–18 del AA �� ��
LDD-G2 M/38 ? 381–4 del AAAG � ��
LDD-G3 F/1 ? � �� �
LDD-G4 F/55 ? R130X � �
LDD-G5 M/27 ? 99 del T Germline LOH � ��
LDD-1 F/51 No 758 ins A � ��
LDD-2 F/11 No �
LDD-5 F/35 No P246L Germline ROH � ��
LDD-7 F/50 Yes 53 del A Germline LOH �
LDD-8a F/43 Yes Y16X � ��
LDD-8b F/34 Yes Q110X � ��
LDD-8c F/? ? R130X �, �� ��, �
LDD-9a ? ? Y88H Germline
LDD-11 ? ? G36R �
LDD-12 ? ? K80E ��
LDD-14 F/43 Likely 347–51del ACAAT Germline � �
LDD-17 M/3 Unlikely �
LDD-19 M/28 ? Y88H Germline NIc � ��

H141R Somatic

NOTE.—Blankpnot done because of lack of sample material.
a LOHploss of heterozygosity.
b ROHpretention of heterozygosity.
c NIpnot informative.

was only detected in DNA from the affected cerebellar
tissue, suggesting that the latter is a somatic mutation.
Of the 16 mutations found in 15 patients with LDD, 10
were truncating mutations, comprising 4 nonsense mu-
tations and 6 frameshifting microdeletions or -insertions,
and 6 were missense mutations. Mutation R130X was
detected in two unrelated patients, LDD-G4 and LDD-
8c. Similarly, mutation Y88H was detected in the germ-
line of two unrelated patients, LDD-9a and LDD-19
(table 1). The recurrent R130X and Y88H as founder
mutations were excluded by genotype analysis (data not
shown). No sequence variants in the promoter region
were found in the three LDD samples without intragenic
PTEN mutations (LDD-G3, LDD-2, and LDD-17) (table
1).

Loss-of-heterozygosity (LOH) analysis was performed
on four LDD samples using two microsatellite markers
flanking PTEN, D10S1765 and D10S541, as previously
described (Marsh et al. 1999). Of the four samples an-
alyzed, three were informative at a minimum of one
marker, and one was not informative for either marker.
LOH was scored when at least one of the two poly-
morphic loci showed evidence of LOH. We found that
two LDD samples had LOH at the PTEN locus in the
affected cerebellar tissue, thus leaving the remaining
germline mutant allele (LDD-G5 and LDD-7) (table 1).

No LOH was detected in the third informative LDD
sample (LDD-5).

We next examined the PTEN expression level and P-
Akt level in these LDD samples by immunohistochem-
istry using antibodies against PTEN (6H2.1) and P-Akt
(Ser 473) (Cell Signaling Technology), respectively. Im-
munohistochemical detection of PTEN and P-Akt was
carried out following protocols described elsewhere (Per-
ren et al. 1999; Zhou et al. 2000a). As noted in other
studies (Perren et al. 1999; Gimm et al. 2000; Zhou et
al. 2000a), the vascular endothelium serves as an internal
positive control for PTEN. Levels of PTEN immuno-
staining in the vascular endothelium are remarkably con-
stant among various tissues, including breast (Perren et
al. 1999), thyroid (Gimm et al. 2000), pancreas (Perren
et al. 2000), and colon (Zhou et al. 2002). PTEN im-
munostaining intensities equal to that of the vascular
endothelium in a particular sample were scored as ��
in table 1, weak or decreased staining intensity as �,
and no immunostaining as �. Overall, 11 (78%) of 14
of the patients with LDD showed negative (�) or weak
(�) PTEN immunostaining in their dysplastic ganglio-
cytoma cells in the cerebellum, and the remaining 3 had
PTEN staining intensity in the dysplastic gangliocytoma
cells equivalent to that in the neurons of the granular-
cell, Purkinje-cell, and molecular layers of the adjacent



Figure 1 Loss of PTEN expression leads to elevated P-Akt levels detected by immunohistochemistry in LDD. a, Moderate to strong PTEN
immunostaining intensity (brown) in the neurons of the granular-cell, Purkinje-cell, and molecular layers of adjacent normal cerebellar section.
b, Loss of PTEN immunostaining in dysplastic ganglion cells of LDD. c, Markedly elevated P-Akt immunoexpression (brown) in the dysplastic
neurons, predominantly in the cytoplasm. Sections were counterstained with methyl green (light blue) or hematoxylin (blue). Original magni-
fication, 20#.
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Figure 2 Spectrum of germline PTEN mutations detected in patients with LDD. A schematic of the nine-exon gene is displayed. Mutations
( ) denoted above the bar were detected in this study. Mutations ( ) underneath the bar were reported elsewhere.n p 16 n p 14

cerebellum and to that in the vascular endothelium.
About three-fourths (73%, 8/11) of the LDD samples
exhibited strong immunoreactivity against P-Akt in the
dysplastic gangliocytoma cells, and one-fourth showed
weak or no P-Akt immunoreactivity. One sample, from
patient LDD-8c, had heterogeneous staining intensities
in different parts of the same tissue section. In general,
the P-Akt immunoreactivity was inversely correlated
with that of PTEN (table 1 and fig. 1).

In this unique series of 18 unrelated patients with
LDD, we found the majority (83%, 15/18) of patients
harbored a mutation in PTEN, irrespective of whether
they had features of CS or not. In the six instances with
corresponding germline and LDD tissue available, all six
had an adult onset and all had germline PTEN muta-
tions. It is interesting to note that the three youngest
patients with LDD, diagnosed at ages 1, 3, and 11 years,
did not display germline and somatic PTEN mutations.
This observation is corroborated by a previous report
that showed that features of CS did not develop in three
children diagnosed with LDD, even after long-term fol-
low-up (Capone Mori et al. 2003). Similar to our cases
of childhood-onset LDD, none of these children were
found to carry germline PTEN mutations either. There-
fore, most—possibly all—cases of adult-onset LDD, ir-
respective of family history or other syndromic features,
are likely due to germline PTEN mutations. We further
demonstrated that these PTEN structural alterations re-
sult in loss of PTEN protein expression in the dysplastic
gangliocytomas, accompanied by elevated levels of P-
Akt, reflecting a pro-proliferative state.

The high frequency and spectrum of germline PTEN
mutations ascertaining only by LDD confirm that LDD
is an important defining feature of CS. Germline PTEN
mutations are associated with 180% of classic cases of

CS. The mutation frequency is even higher when mu-
tations in the promoter region are taken into account
(Zhou et al. 2003). An overview of all germline PTEN
mutations occurring in CS, to date, suggests that two-
thirds of the mutations occur in exons 1–5, whereas two-
thirds of mutations in BRRS occur in exons encoding
the C-terminal half (Eng 2003). As in CS, the mutation
frequency in LDD is 83%. When this series of 15 mu-
tation-positive individuals with LDD is combined with
14 previously reported mutation-positive individuals
with LDD (with obvious CS features) (Iida et al. 1998;
Marsh et al. 1998; Koch et al. 1999; Nelen et al. 1999;
Sutphen et al. 1999; Robinson and Cohen 2000), there
are a total of 29 such cases (fig. 2). Of the 30 mutations
found in 29 patients with LDD, 26 are within the first
five exons, reminiscent of the spectrum in CS (Eng 2003).
Furthermore, of these 30 LDD-associated mutations,
∼23% are missense, compared to ∼24% of all CS-related
mutations reported to date (Eng 2003) ( , Fisher’sP 1 1
Exact Test). Taken together, these observations suggest
that LDD shares a common genetic etiology with CS.

Among the 14 different PTEN mutations in these 15
subjects with LDD, 3 mutations, Q110X, R130X, and
P246L, have been previously described in many pro-
bands with CS or BRRS (Eng 2003). Apart from P246L,
the other four missense mutations have not been de-
scribed before. All of the affected amino acids are highly
conserved among the vertebrates, and each amino acid
change is significant. More importantly, the missense
mutations P246L and Y88H have been shown to upre-
gulate Akt (table 1), thus functionally proving patho-
genicity. Although K80E results in fully expressed PTEN
protein, we do not have information on its P-Akt status.
A lysine-to–glutamic acid alteration in a highly con-
served amino acid lying in the phosphatase domain,
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moreover, would be predicted to be pathogenic. This
alteration has never been described in 11,000 normal
control subjects in the communal experience.

Although germline PTEN mutations account for the
majority, perhaps even all, of cases of adult-onset LDD
to date (Iida et al. 1998; Marsh et al. 1998; Koch et al.
1999; Nelen et al. 1999; Sutphen et al. 1999; Robinson
and Cohen 2000; this report), it is unclear whether the
loss of the second PTEN allele is necessary for the de-
velopment of LDD. Only a single report pertinent to the
human situation exists: a family with CS segregating a
germline PTEN mutation also had one individual with
LDD. The dysplastic gangliocytoma expressed the mu-
tant allele, suggesting either genetic or epigenetic loss of
the wild-type allele, at least in this case (Iida et al. 1998).
We have shown that two of the three informative LDD
samples with germline mutations had LOH at the PTEN
locus, and a fourth LDD sample with a germline mu-
tation had a somatic “second hit” mutation in the re-
maining allele. Furthermore, we have demonstrated that
the majority of LDD samples had complete loss or de-
creased expression of PTEN accompanying elevated P-
Akt levels by immunohistochemistry (table 1). These
data would suggest that loss of the remaining wild-type
PTEN allele, either by genetic or epigenetic means, to-
gether with the germline mutation, is necessary for the
development of LDD. That the PTEN genomic altera-
tions, reflected in lost or decreased PTEN protein ex-
pression, result in functional consequences is reflected
by increased phosphorylation of Akt in all but two mu-
tation-positive LDD samples. Thus, loss of PTEN and
subsequent activation of PI3K/Akt pathway is likely the
key molecular mechanism in the pathogenesis of LDD.

Two exceptions (LDD-G4 and LDD-14) (table 1) are
worthy of some discussion. LDD-G4 harbors a R130X
mutation, commonly seen in patients with CS and BRRS
(reviewed in Eng 2003), and consequently has decreased
PTEN expression in the LDD cells. Similarly, LDD-14,
with a germline frameshift mutation in exon 5, has no
PTEN expression, likely because of truncation of the
product of the mutant allele and either genetic or epi-
genetic inactivation of the remaining wild-type allele.
Yet, in both of these instances, phosphorylation of Akt
is not increased. It is possible that, in these two samples,
the nonlipid phosphatase, PI3K/Akt-independent path-
way (Weng et al. 2001b, 2002) downstream of PTEN
is dysfunctional, nonetheless resulting in LDD but via a
different downstream mechanism.

To date, it would appear that germline PTEN mu-
tations have been associated with the majority of CS
cases, over half of BRRS cases, up to 20% of PS cases,
and, as suggested by our data presented here, even in a
subset of isolated LDD cases. Although each of the syn-
dromes can be associated with distinct PTEN mutations,
it is also clear that identical mutations (e.g., R130X)

have been described in all these syndromes and yet re-
sult in different phenotypes (reviewed by Eng 2003).
Whether the phenotypic differences are due to interac-
tion with other modifying genes and/or the environment
is currently unknown.

In summary, our data demonstrate a high PTEN-mu-
tation frequency in adult-onset LDD. Virtually all mu-
tations detected are germline mutations. The majority
of these result in decreased or no PTEN protein ex-
pression and increased phosphorylation of Akt, which
accounts for the pro-proliferative context leading to
LDD. The three children with LDD in our study, together
with three other children with LDD reported elsewhere
(Capone Mori et al. 2003), all exhibited neither PTEN
mutations nor CS features, despite long follow-up. This
may preliminarily suggest that childhood LDD is a dis-
tinct entity from adult-onset LDD, a hypothesis that re-
quires further investigation. Thus, consideration should
be given to adding adult-onset LDD as a new pathog-
nomonic feature of CS/PTEN hamartoma tumor syn-
drome (PHTS).
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